
37

Chapter 4

UML Versus Codecharts

Since the UML is the de facto industry standard modelling language, questions
naturally arise about its relation to Codecharts. This subject has been treated
in detail throughout our discussion in the properties of design description
languages in Chapter 2 and in the guiding principles of Codecharts presented
in Chapter 3. This chapter summarizes the similarities and differences
between Codecharts and UML diagrams.

The UML is a rich and expressive set of notations designed to articulate a
very wide range of functional and nonfunctional specifications of software as
well as activities related to software development. Unlike Codecharts, the
UML is not merely a design description language (Chapter 2), and it is not
constrained to design decisions about object-oriented programs. Its charter is
therefore significantly broader than that of Codecharts.

More to the point, the UML is not a formal language: It is not bound by
the need for precision, nor is it restricted by the requirement for
verifiability—and by implication, automated verifiability (§3.4). This freedom
from rigour allows using the UML to articulate specifications for which any
notion of design verification (let alone automated verification) is hard to
conceive. For example, Use-Case Diagrams and Activity Diagrams are
particularly effective in visualizing informal notions such as user
requirements, whose representation often requires concepts that fall well
outside the charter of any formal language. Furthermore, the UML’s
stereotype mechanism allows users to extend it in any way desired, offering
the software engineer the flexibility required for capturing and conveying
novel kinds of specifications without requiring attention to the precise
meaning of any particular symbol. On the flip side, the same freedom entails
the ambiguity from which UML suffers. Consider, for example, the ambiguity
of whether symbols missing from the diagram imply negative information,
discussed in detail §3.8. This ambiguity entails that tools that use UML for
design verification and program visualization are inherently problematic.

Codecharts: Roadmaps and Blueprints for Object-Oriented Programs, by Amnon H. Eden
Copyright © 2011 John Wiley & Sons, Inc.

c04.pdf 1c04.pdf 1 2/11/2011 5:41:07 PM2/11/2011 5:41:07 PM

38 Chapter 4 UML Versus Codecharts

Even if the meaning of some UML diagrams can be determined in a fairly
precise manner, UML diagrams are, by and large, undecidable (§2.2). In
effect, this means that it is virtually impossible in principle to verify
conformance to UML diagrams and it is impossible in principle to build a tool
that can answer the verification question for such diagrams. Undecidability
implies that UML diagrams can be very expressive in modelling scenarios
and patterns of behaviour in programs. But it rules out automated verification,
which means that conformance to specifications need be checked manually,
an error-prone and expensive process that rarely takes place in reality.

Finally, the UML emphasizes expressiveness, offering versatile means for
modelling specifications, whereas Codecharts are guided by the principles of
elegance (§2.4) and minimality (§3.7). That is, where the UML is tailored to
articulate an abudance of specific types of services and modules, such as
packages (namespaces), libraries, subsystems, subprograms, processes,
components, connectors, ports, and so on, the vocabulary of Codecharts (p. 23)
is restricted to 15 visual tokens.

Given the differences in scope and formality, the UML and Codecharts
seem far apart. A detailed comparison between the languages is therefore
only appropriate when the languages are narrowed down to design
description languages (Chapter 2) for object-oriented programs. That is, only
a comparison between UML Class and Package Diagrams vs. Codecharts is
meaningful. Below we sketch some of the obvious differences in modelling
programs, design patterns, and application frameworks.

To compare the notations’ capabilities in modelling programs, contrast
Codechart 1 with the Class Diagrams in Figures 2-1 and 2-2 (p. 14), all of
which were reverse engineered from the same source code [the application
programming interface (API) of the Java 3D class library]. Clearly, the class
diagrams are not usable because they attempt to visualize a large program in
terms of individual classes. The only relevant means of abstraction that UML
provides are packages. But Package Diagrams do not improve the situation
because they are restricted to modelling relations between the physical units
that Java packages and C++ namespaces offer.

This comparison demonstrates that Class Diagrams can effectively model
the implementation minutia of small programs but also that the notation
does not scale (§2.3). It illustrates a fundamental difference between
Codecharts and Class Diagrams: In Codecharts, where the emphasis is on
visualizing programs at any level of abstraction, sets of classes, methods, and
class hierarchies can be depicted regardless of their size. Consequently,
Codecharts are more scalable, and visualization tools supporting Codecharts
can be more effective in reverse engineering roadmaps to large programs.
Furthermore, Codechart abstraction mechanisms allow software designers to
use it to articulate early design decisions without premature commitment to
implementation minutia, a feat that is much less achievable in the absence of
generic notions such as that of a set of classes and isomorphic relations. This
explains why program visualization tools are not common in the industry and
why the visualization tools rarely employ UML.

Finally, let us consider the matter of tool support. The conformance of a
program to a Codechart can be verified fully automatically (§3.4). This, for
example, can be done with the Toolkit for Java 1.4 programs. Conversely,

c04.pdf 2c04.pdf 2 2/11/2011 5:41:07 PM2/11/2011 5:41:07 PM

Chapter 4 UML Versus Codecharts 39

Class Diagrams are not formally defined, let alone automatically verifiable.
For this reason, tools that claim to verify class diagrams largely end up
verifying only a trivial subset of the notation.

To compare the notations’ capabilities in representing design patterns,
contrast the class diagram in Figure 4-1 with Codechart 7. Both describe the
Composite design pattern (to which §11.1 is dedicated).

Figure 4-1. The Composite pattern modelled in the UML’s Class Diagram notation (Glossary:
p. 233; adapted from [Gamma et al. 1995])

Codechart 7. The Composite pattern in LePUS3

A number of obvious differences come to light from this comparison: Both
diagrams attempt to depict the main participants in the pattern, which are
classes and methods that play specific roles in the design motif that the
pattern captures. But the UML depicts the Component participant as a class
called Component, whereas the Codechart employs a variable for the purpose

c04.pdf 3c04.pdf 3 2/11/2011 5:41:08 PM2/11/2011 5:41:08 PM

40 Chapter 4 UML Versus Codecharts

called Component. The difference is that a variable specifies unambiguously
that any class may (in principle) play this role as long as it satisfies the
formulas depicted in the Codechart. Next, observe that both diagrams seek to
indicate that the Component class defines operations over the set of children
(add, remove, getChild) and that these operations are overridden in the
Composite class. The Class Diagram enumerates these operations, whereas
the Codechart models them as a tribe (as a set of methods) of any size. The
same applies to the number of Leaf classes (which can be one or more) as
modelled in the UML using the informal ellipsis (…) notation, whereas in the
Codechart it is modelled as a set of classes (Leaves).

Are these differences significant? The problem with the informal notation
is that it leaves many questions unanswered: Must all “leaf” classes inherit
from Component? (Yes). Must all “leaf” classes override the methods in
Component? (No, they can inherit them). Must all the Component operations
that are overridden by the Composite class forward the call to the respective
method in the children? (Yes). Are there only three operations over children?
(No). Answers to these questions are rigorously specified only when
appropriate abstraction mechanisms are employed, such as sets of classes,
sets of methods, and isomorphic predicate formulas.

Beyond these observations, the comparison brings to light a more
fundamental difference between the notations. Symbols in Class Diagrams
stand for elements of specific programs, whereas Codecharts subscribe to the
principle of genericity (§3.6), setting apart symbols that model programs
(constants) from symbols that model generic abstractions such as participants
in design patterns (variables). Finally, our commitment to the principle of
automated verifiability also dictates that the conformance of a program to
Codechart 7 can be verified fully automatically.

Finally, let us compare the two notations’ capabilities in documenting
the use of application frameworks (see Chapter 10). Compare the Class
Diagram in Figure 4-2 with Codechart 8. Both model some elements of
Enterprise JavaBeans (to which §10.1 is dedicated). If a Class Diagram is
used to demonstrate how programmers should write their code and how it
should relate to the framework’s classes, then only specific examples will
do—classes Customer and CustomerHome in Figure 4-2. Such practice is
likely to lead to confusion between the parts in the examples that
programmers must replicate (in this case, a home interface must inherit from
class javax.ejb.EJBObject) vs. the parts in the example that are merely
demonstrative (everything else about class Customer). Codechart 8, on the
other hand, uses variables to describe only the constraints over the
user-defined classes without implying any irrelevant constraints. In large
and complex application frameworks, where interactions between user-
defined and prefabricated parts of the program can take a very complex form,
the use of variables is indispensible (see, e.g., Codechart 85, p. 136).

c04.pdf 4c04.pdf 4 2/11/2011 5:41:08 PM2/11/2011 5:41:08 PM

Chapter 4 UML Versus Codecharts 41

Figure 4-2. Enterprise JavaBeansTM (Table 11) elements in the UML (Glossary: p. 233, adapted
from [Monson-Haefel 2001]). Classes CustomerHome and Customer are sample implementations
of “home interface” and “remote interface”

Codechart 8. Enterprise JavaBeansTM (Table 11) elements in LePUS3. Variables (empty shapes)
represent user-defined (yet to be implemented) entities whereas constants (filled shapes) represent
prefabricated (fully implemented) entities

In conclusion, UML Class Diagrams and Codecharts are suitable for very
different purposes. The appropriateness of each notation therefore depends
on the circumstances in which they are used.

c04.pdf 5c04.pdf 5 2/11/2011 5:41:08 PM2/11/2011 5:41:08 PM

c04.pdf 6c04.pdf 6 2/11/2011 5:41:08 PM2/11/2011 5:41:08 PM

